Analisi e sintesi di un sommatore a 2-bit

1) Timing diagram

2) Truth Table (from the simulation)

B1

B0

A1

A0

C1

S1

C0

S0

0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1
0 0 1 0 0 1 0 0
0 0 1 1 0 1 0 1
0 1 0 0 0 0 0 1
0 1 0 1 0 1 1 0
0 1 1 0 0 1 0 1
0 1 1 1 1 0 1 0
1 0 0 0 0 1 0 0
1 0 0 1 0 1 0 1
1 0 1 0 1 0 0 0
1 0 1 1 1 0 0 1
1 1 0 0 0 1 0 1
1 1 0 1 1 0 1 0
1 1 1 0 1 0 0 1
1 1 1 1 1 1 1 0

2) K-Maps

Function: C1——————————————————————————————–Function:S1

 
   

Function: C0—————————————————————————————- Function: S0

 
   

B1

B0

A1

A0

C1

S1

C0

S0

0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1
0 0 1 0 0 1 0 0
0 0 1 1 0 1 0 1
0 1 0 0 0 0 0 1
0 1 0 1 0 1 1 0
0 1 1 0 0 1 0 1
0 1 1 1 1 0 1 0
1 0 0 0 0 1 0 0
1 0 0 1 0 1 0 1
1 0 1 0 1 0 0 0
1 0 1 1 1 0 0 1
1 1 0 0 0 1 0 1
1 1 0 1 1 0 1 0
1 1 1 0 1 0 0 1
1 1 1 1 1 1 1 0

3) Boolean expression of outputs:

C1 = (B1andA1) or (B1andB0andA0) or (B0andA1andA0) S1 = (B1and!B0and!A1) or (!B1and!B0andA1) or (!B1andA1and!A0) or (B1and!A1and!A0) or (B1andB0andA1andA0) or (!B1andB0and!A1andA0)

C0 = B0andA0 S0 = (!B0andA0)or(B0and!A0)

4) Schematics

C1 network:

S1 network:

C0 network:

S0 network:

Lascia un commento